Saturday, 21 October 2017

Movimentação Da Implementação Do Filtro Médio


A média móvel como um filtro A média móvel é frequentemente utilizada para suavização de dados na presença de ruído. A média móvel simples nem sempre é reconhecida como o filtro de Resposta de Impulso Finito (FIR) que é, enquanto é realmente um dos filtros mais comuns no processamento de sinal. Tratá-lo como um filtro permite compará-lo com, por exemplo, windowed-sinc filtros (ver os artigos sobre low-pass, high-pass, band-pass e band-reject filtros para exemplos desses). A principal diferença com esses filtros é que a média móvel é adequada para sinais para os quais a informação útil está contida no domínio do tempo. Das quais as medidas de alisamento por média são um excelente exemplo. Filtros Windowed-sinc, por outro lado, são fortes performers no domínio da freqüência. Com equalização no processamento de áudio como um exemplo típico. Há uma comparação mais detalhada de ambos os tipos de filtros no domínio do tempo versus desempenho de domínio de freqüência de filtros. Se você tiver dados para os quais o tempo eo domínio de freqüência são importantes, então você pode querer dar uma olhada em Variações na Média Móvel. Que apresenta um número de versões ponderadas da média móvel que são melhores nisso. A média móvel de comprimento (N) pode ser definida como escrita como é tipicamente implementada, com a amostra de saída corrente como a média das amostras (N) anteriores. Visto como um filtro, a média móvel executa uma convolução da seqüência de entrada (xn) com um pulso retangular de comprimento (N) e altura (1 / N) (para fazer a área do pulso e, portanto, o ganho de O filtro, um). Na prática, é melhor tomar (N) ímpar. Embora uma média móvel possa também ser calculada utilizando um número par de amostras, utilizar um valor ímpar para (N) tem a vantagem de que o atraso do filtro será um número inteiro de amostras, uma vez que o atraso de um filtro com (N) Amostras é exactamente ((N-1) / 2). A média móvel pode então ser alinhada exatamente com os dados originais deslocando-o por um número inteiro de amostras. Domínio Dado que a média móvel é uma convolução com um pulso retangular, a sua resposta de frequência é uma função sinc. Isso torna algo como o dual do filtro windowed-sinc, uma vez que é uma convolução com um pulso sinc que resulta em uma resposta de freqüência retangular. É esta resposta de frequência de sinc que faz com que a média móvel seja um desempenho fraco no domínio da freqüência. No entanto, ele funciona muito bem no domínio do tempo. Portanto, é perfeito para suavizar os dados para remover o ruído, enquanto ao mesmo tempo ainda mantém uma rápida resposta passo (Figura 1). Para o típico Ruído Gaussiano Branco Aditivo (AWGN) que é freqüentemente assumido, a média (N) de amostras tem o efeito de aumentar a SNR por um fator de (sqrt N). Uma vez que o ruído para as amostras individuais não está correlacionado, não há razão para tratar cada amostra de forma diferente. Assim, a média móvel, que dá a cada amostra o mesmo peso, vai se livrar da quantidade máxima de ruído para uma dada nitidez resposta passo. Implementação Porque é um filtro FIR, a média móvel pode ser implementada através de convolução. Ele terá então a mesma eficiência (ou falta dela) como qualquer outro filtro FIR. No entanto, também pode ser implementado recursivamente, de uma forma muito eficiente. Segue-se diretamente da definição de que esta fórmula é o resultado das expressões para (yn) e (yn1), ou seja, onde observamos que a mudança entre (yn1) e (yn) é que um termo extra (xn1 / N) Aparece no final, enquanto o termo (xn-N1 / N) é removido do início. Nas aplicações práticas, muitas vezes é possível deixar de fora a divisão por (N) para cada termo, compensando o ganho resultante de (N) em outro lugar. Esta implementação recursiva será muito mais rápida que a convolução. Cada novo valor de (y) pode ser calculado com apenas duas adições, em vez das (N) adições que seriam necessárias para uma implementação direta da definição. Uma coisa a procurar por uma implementação recursiva é que os erros de arredondamento se acumularão. Isso pode ou não ser um problema para o aplicativo, mas também implica que essa implementação recursiva realmente funcionará melhor com uma implementação inteira do que com números de ponto flutuante. Isso é bastante incomum, uma vez que uma implementação de ponto flutuante é geralmente mais simples. A conclusão de tudo isso deve ser que você nunca deve subestimar a utilidade do simples filtro de média móvel em aplicações de processamento de sinal. Filter Design Tool Este artigo é complementado com uma ferramenta Filter Design. Experimente com diferentes valores para (N) e visualize os filtros resultantes. Experimente agoraEu tenho essencialmente uma matriz de valores como este: A matriz acima é simplificada, estou coletando um valor por milissegundo no meu código real e eu preciso processar a saída em um algoritmo que eu escrevi para encontrar o pico mais próximo antes de um ponto no tempo . Minha lógica falha porque no meu exemplo acima, 0.36 é o pico real, mas meu algoritmo olharia para trás e veria o último número 0.25 como o pico, pois há uma diminuição para 0.24 antes dele. O objetivo é tomar esses valores e aplicar um algoritmo para eles que irá suavizar-los um pouco para que eu tenha mais valores lineares. (Ou seja: Id como meus resultados para ser curvy, não jaggedy) Ive foi dito para aplicar um filtro exponencial de média móvel para os meus valores. Como posso fazer isso É muito difícil para mim ler equações matemáticas, eu lidar muito melhor com o código. Como processar valores em minha matriz, aplicando um cálculo exponencial de média móvel para igualá-los perguntou 8 de fevereiro às 20:27 Para calcular uma média móvel exponencial. Você precisa manter algum estado ao redor e você precisa de um parâmetro de ajuste. Isso requer uma pequena classe (supondo que você está usando o Java 5 ou posterior): Instantiate com o parâmetro de decadência desejado (pode ter a sintonia deve estar entre 0 e 1) e use a média () para filtrar. Ao ler uma página sobre alguma recorrência matemática, tudo o que você realmente precisa saber ao transformá-lo em código é que os matemáticos gostam de escrever índices em matrizes e seqüências com subscritos. (Eles têm algumas outras notações também, o que não ajuda.) No entanto, o EMA é bastante simples, como você só precisa se lembrar de um antigo valor não arrays estado complicado necessário. Respondeu 8 fevereiro às 20:42 TKKocheran: Muito bonito. Não é bom quando as coisas podem ser simples (se começar com uma nova seqüência, obter um novo averager.) Note que os primeiros termos na seqüência média saltarão em torno de um pouco devido a efeitos de limite, mas você obtém aqueles com outras médias móveis também. No entanto, uma boa vantagem é que você pode envolver a lógica de média móvel para o averager e experimentar sem perturbar o resto do seu programa muito. Ndash Donal Fellows Feb 9 12 em 0:06 Estou tendo dificuldade em entender suas perguntas, mas vou tentar responder de qualquer maneira. 1) Se o seu algoritmo encontrado 0,25 em vez de 0,36, então ele está errado. É errado porque assume um aumento ou uma diminuição monotônica (que está sempre subindo ou sempre indo para baixo). A menos que você média TODOS os seus dados, seus pontos de dados --- como você apresentá-los --- são não-lineares. Se você realmente deseja encontrar o valor máximo entre dois pontos no tempo, corte sua matriz de tmin para tmax e encontre o máximo desse subarray. 2) Agora, o conceito de médias móveis é muito simples: imagine que eu tenho a seguinte lista: 1.4, 1.5, 1.4, 1.5, 1.5. Eu posso suavizar isto tomando a média de dois números: 1.45, 1.45, 1.45, 1.5. Observe que o primeiro número é a média de 1,5 e 1,4 (segundo e primeiro números) a segunda (nova lista) é a média de 1,4 e 1,5 (terceira e segunda lista antiga) a terceira (nova lista) a média de 1,5 e 1,4 (Quarto e terceiro), e assim por diante. Eu poderia ter feito o período de três ou quatro, ou n. Observe como os dados são muito mais suaves. Uma boa maneira de ver médias móveis no trabalho é ir ao Google Finance, selecionar um estoque (tente Tesla Motors bastante volátil (TSLA)) e clique em technicals na parte inferior do gráfico. Selecione Média Móvel com um período determinado e Média Mínima exponencial para comparar suas diferenças. A média móvel exponencial é apenas mais uma elaboração disto, mas pondera os dados mais antigos menos do que os novos dados, esta é uma forma de polarizar o alisamento para trás. Por favor, leia a entrada da Wikipedia. Então, isso é mais um comentário do que uma resposta, mas a pequena caixa de comentários era apenas pequena. Boa sorte. Se você está tendo problemas com a matemática, você poderia ir com uma média móvel simples, em vez de exponencial. Assim, a saída que você obtém seria o último x termos dividido por x. Pseudocódigo não testado: Note que você precisará lidar com as partes inicial e final dos dados, uma vez que claramente você não pode fazer a média dos últimos 5 termos quando estiver no seu 2º ponto de dados. Além disso, há maneiras mais eficientes de calcular essa média móvel (soma soma - mais antigo mais recente), mas isso é para obter o conceito do que está acontecendo em toda. Respondido fevereiro 8 12 em 20: 41The cientista e coordenadores guia para processamento de sinal digital Por Steven W. Smith, Ph. D. Como o nome indica, o filtro de média móvel opera fazendo a média de um número de pontos a partir do sinal de entrada para produzir cada ponto no sinal de saída. Na forma de equação, isto é escrito: Onde está o sinal de entrada, é o sinal de saída, e M é o número de pontos na média. Por exemplo, em um filtro de média móvel de 5 pontos, o ponto 80 no sinal de saída é dado por: Como alternativa, o grupo de pontos do sinal de entrada pode ser escolhido simetricamente em torno do ponto de saída: Isto corresponde à alteração da soma em Eq . 15-1 de: j 0 a M -1, para: j - (M -1) / 2 a (M -1) / 2. Por exemplo, em um filtro de média móvel de 10 pontos, o índice, j. Pode variar de 0 a 11 (média de um lado) ou -5 a 5 (média simétrica). A média simétrica requer que M seja um número ímpar. A programação é ligeiramente mais fácil com os pontos de apenas um lado no entanto, isso produz uma mudança relativa entre os sinais de entrada e saída. Você deve reconhecer que o filtro de média móvel é uma convolução usando um kernel de filtro muito simples. Por exemplo, um filtro de 5 pontos tem o kernel do filtro: 82300, 0, 1/5, 1/5, 1/5, 1/5, 1/5, 0, 08230. Ou seja, o filtro de média móvel é uma convolução Do sinal de entrada com um impulso retangular com uma área de um. A Tabela 15-1 mostra um programa para implementar o filtro de média móvel. Criar um filtro de média móvel O Filtro de média móvel permite calcular uma série de médias de uma ou duas faces com base em um comprimento de janela especificado pelo usuário. O módulo adiciona uma nova coluna de recurso ao conjunto de dados. A média móvel resultante pode então ser usada para plotar e visualizar, uma linha de base para modelagem, previsão, cálculo de variâncias contra cálculo para períodos semelhantes, e assim por diante. Para o cenário de streaming, a média móvel cumulativa e ponderada pode ser utilizada. A média móvel acumulada leva em consideração os pontos anteriores aos pontos que chegam para o período corrente. Este módulo ajuda a revelar e prever padrões temporais úteis em dados retrospectivos e em tempo real. Use-o com o módulo Aplicar filtro. Este módulo espera os seguintes parâmetros de entrada: Filtros de ordem superior fornecem uma janela de cálculo maior e uma aproximação mais próxima da linha de tendência. Os filtros de ordem inferior usam uma janela de cálculo menor e se assemelham mais aos dados originais. O tipo de média móvel a ser aplicada. Consulte a tabela a seguir para obter exemplos. ML Studio fornece as seguintes formas de definir uma média móvel: Média Móvel - MA BREAKING DOWN Média Móvel - MA Como um exemplo SMA, considere um título com os seguintes preços de fechamento em 15 dias: Semana 1 (5 dias) 20, 22, 24 , 25, 23 Semana 2 (5 dias) 26, 28, 26, 29, 27 Semana 3 (5 dias) 28, 30, 27, 29, 28 Uma MA de 10 dias seria a média dos preços de fechamento para os primeiros 10 dias Como o primeiro ponto de dados. O ponto de dados seguinte iria cair o preço mais antigo, adicionar o preço no dia 11 e tomar a média, e assim por diante, como mostrado abaixo. Conforme mencionado anteriormente, MAs atraso ação preço atual, porque eles são baseados em preços passados ​​quanto maior for o período de tempo para o MA, maior o atraso. Assim, um MA de 200 dias terá um grau muito maior de atraso do que um MA de 20 dias porque contém preços nos últimos 200 dias. A duração da MA a ser utilizada depende dos objetivos de negociação, com MAs mais curtos usados ​​para negociação de curto prazo e MAs de longo prazo mais adequados para investidores de longo prazo. O MA de 200 dias é amplamente seguido por investidores e comerciantes, com quebras acima e abaixo desta média móvel considerada como sinais comerciais importantes. MAs também transmitir sinais comerciais importantes por conta própria, ou quando duas médias se cruzam. Um aumento MA indica que a segurança está em uma tendência de alta. Enquanto um declínio MA indica que ele está em uma tendência de baixa. Da mesma forma, o impulso ascendente é confirmado com um crossover de alta. Que ocorre quando um MA de curto prazo cruza acima de um MA de longo prazo. Momento descendente é confirmado com um crossover de baixa, que ocorre quando um MA de curto prazo cruza abaixo de um MA de longo prazo.

No comments:

Post a Comment