Weighted Moving Averages: The Basics Ao longo dos anos, os técnicos encontraram dois problemas com a média móvel simples. O primeiro problema reside no período de tempo da média móvel (MA). A maioria dos analistas técnicos acreditam que a ação preço. O preço de abertura ou de fechamento das ações, não é suficiente para depender para predizer adequadamente sinais de compra ou venda da ação de crossover MAs. Para resolver este problema, os analistas agora atribuem mais peso aos dados de preços mais recentes usando a média móvel exponencialmente suavizada (EMA). Exemplo: Por exemplo, usando um MA de 10 dias, um analista levaria o preço de fechamento do 10º dia e multiplicaria esse número por 10, o nono dia por nove, o oitavo Dia por oito e assim por diante para o primeiro do MA. Uma vez determinado o total, o analista dividiria o número pela adição dos multiplicadores. Se você adicionar os multiplicadores do exemplo de MA de 10 dias, o número é 55. Esse indicador é conhecido como a média móvel ponderada linearmente. (Para a leitura relacionada, verifique para fora as médias móveis simples fazem tendências estar para fora.) Muitos técnicos são crentes firmes na média movente exponencial suavizada (EMA). Este indicador tem sido explicado de tantas maneiras diferentes que confunde estudantes e investidores. Talvez a melhor explicação venha de John J. Murphys Análise Técnica dos Mercados Financeiros (publicado pelo New York Institute of Finance, 1999): A média móvel exponencialmente suavizada aborda ambos os problemas associados à média móvel simples. Primeiro, a média exponencialmente suavizada atribui um maior peso aos dados mais recentes. Portanto, é uma média móvel ponderada. Mas, embora atribua menor importância aos dados de preços passados, inclui no seu cálculo todos os dados na vida útil do instrumento. Além disso, o usuário é capaz de ajustar a ponderação para dar maior ou menor peso ao preço dos dias mais recentes, que é adicionado a uma porcentagem do valor dias anteriores. A soma de ambos os valores percentuais adiciona até 100. Por exemplo, o preço dos últimos dias poderia ser atribuído um peso de 10 (0,10), que é adicionado ao peso dias anteriores de 90 (0,90). Isto dá o último dia 10 da ponderação total. Isso seria o equivalente a uma média de 20 dias, dando ao preço dos últimos dias um valor menor de 5 (0,05). Figura 1: Média Móvel Suavizada Exponencialmente O gráfico acima mostra o índice Nasdaq Composite da primeira semana de agosto de 2000 a 1º de junho de 2001. Como você pode ver claramente, a EMA, que neste caso está usando os dados de fechamento de preços em um Período de nove dias, tem sinais de venda definitiva no dia 8 de setembro (marcado por uma seta preta para baixo). Este foi o dia em que o índice quebrou abaixo do nível de 4.000. A segunda seta preta mostra outra perna para baixo que os técnicos estavam realmente esperando. O Nasdaq não conseguiu gerar volume suficiente e juros dos investidores de varejo para quebrar a marca de 3.000. Em seguida, mergulhou novamente para baixo para fora em 1619.58 em 4 de abril. A tendência de alta de 12 de abril é marcado por uma seta. Aqui o índice fechou em 1.961,46, e os técnicos começaram a ver os gestores de fundos institucionais começando a pegar alguns negócios como Cisco, Microsoft e algumas das questões relacionadas à energia. Introdução Na iteração B, (Tabela B7), iteração C (Tabela C7) e iteração D (Tabela B7) D7 e Tabela D12), o componente de ciclo de tendência é extraído de uma estimativa da série ajustada sazonalmente usando as médias móveis de Henderson. O comprimento do filtro de Henderson é escolhido automaticamente por X-12-ARIMA em um procedimento de duas etapas. A escolha automática da ordem da média móvel baseia-se no valor de um indicador denominado proporção que mede o significado da componente irregular na série. Quanto mais forte for a componente irregular, maior a ordem da média móvel é selecionada. O procedimento utilizado em cada iteração é muito semelhante, as únicas diferenças são o número de opções disponíveis eo tratamento das observações nas duas extremidades da série. O procedimento abaixo é aplicado para séries temporais mensais. Escolha automática do filtro Henderson ndash parte B Primeiro, o ciclo de tendência é calculado usando uma média móvel Henderson de 13 termos como: Em seguida, em caso aditivo, o componente irregular é extraído subtraindo o ciclo tendência da série ajustada sazonalmente. Para a decomposição multiplicativa, uma componente irregular é extraída pela divisão das séries ajustadas sazonalmente pelo ciclo tendencial. Para calcular a razão é calculada uma primeira decomposição da série SA (corrigida de sazonalidade). Para as componentes C (tendência-ciclo) e I (irregular), calcula-se a média dos valores absolutos das taxas de crescimento mensal (modelo multiplicativo) ou mensal (modelo aditivo). As observações no início e no fim da série temporal que não podem ser suavizadas por médias de movimento de Henderson de 13 termos simétricas são ignoradas. Se a proporção for menor que 1, uma média móvel de Henderson de 9 termos é selecionada de outra forma, uma média móvel de Henderson de 13 termos é selecionada. O ciclo de tendência é calculado aplicando um filtro de Henderson selecionado à série ajustada sazonalmente do Quadro B6. As observações no início e no final da série temporal que não podem ser calculadas por meio de filtros de Henderson simétricos são estimadas por médias móveis assimétricas ad hoc. Escolha automática do filtro Henderson ndash parte C e D Primeiro, o ciclo de tendência é calculado usando uma média móvel de Henderson de 13 termos como: Em seguida, no caso aditivo, o componente irregular é extraído subtraindo o ciclo tendência do ajuste sazonal série. Para a decomposição multiplicativa, a componente irregular é extraída dividindo as séries ajustadas sazonalmente pelo ciclo-tendência. Para calcular a razão é calculada uma primeira decomposição da série SA (ajustada sazonalmente). Para as componentes C (tendência-ciclo) e I (irregular), calcula-se a média dos valores absolutos das taxas de crescimento mensal (modelo multiplicativo) ou mensal (modelo aditivo). As observações no início e no fim da série temporal que não podem ser suavizadas por médias de movimento de Henderson de 13 termos simétricas são ignoradas. Se a proporção for menor do que 1, uma média móvel de Henderson de 9 períodos é selecionada se a proporção for maior que 3,5, uma média móvel de Henderson de 23 termos é selecionada caso contrário, uma média móvel de Henderson de 13 termos é selecionada. O ciclo de tendência é calculado aplicando um filtro de Henderson seleccionado às séries ajustadas sazonalmente da Tabela C6, Tabela D7 ou Tabela D12, em conformidade. Em ambas as extremidades da série, onde um filtro central de Henderson não pode ser aplicado, os pesos das extremidades assimétricas para o termo 7 Henderson filtro são usados (Nota) Como a série na Tabela C1 foi ajustada para valores extremos, espera-se que a vontade Ser menor do que o calculado na parte B. A escolha manual do filtro Henderson X-12-ARIMA permite escolher manualmente qualquer média móvel Henderson ímpar para a estimativa final do ciclo tendencial. O usuário também pode alterar o filtro asmétrico de Henderson padrão, aplicado para observações em ambas as extremidades da série de tempo.6.2 Médias móveis ma 40 elecsales, ordem 5 41 Na segunda coluna desta tabela, é mostrada uma média móvel de ordem 5, fornecendo uma Estimativa da tendência-ciclo. O primeiro valor nesta coluna é a média das cinco primeiras observações (1989-1993) o segundo valor na coluna 5-MA é a média dos valores 1990-1994 e assim por diante. Cada valor na coluna 5-MA é a média das observações no período de cinco anos centrado no ano correspondente. Não há valores para os dois primeiros anos ou últimos dois anos porque não temos duas observações de cada lado. Na fórmula acima, a coluna 5-MA contém os valores de hat com k2. Para ver como é a estimativa do ciclo tendencial, traçamos o gráfico juntamente com os dados originais da Figura 6.7. Lote 40 elecsales, principal quotResidential vendas de eletricidade, ylab quotGWhquot. Observe como a tendência (em vermelho) é mais suave do que os dados originais e captura o movimento principal da série de tempo sem todas as pequenas flutuações. O método da média móvel não permite estimativas de T em que t está próximo das extremidades da série, portanto, a linha vermelha não se estende para os bordos do gráfico em qualquer lado. Mais tarde usaremos métodos mais sofisticados de estimativa de tendência-ciclo que permitem estimativas próximas aos pontos finais. A ordem da média móvel determina a suavidade da estimativa de tendência-ciclo. Em geral, uma ordem maior significa uma curva mais suave. O gráfico a seguir mostra o efeito da alteração da ordem da média móvel para os dados de vendas de eletricidade residencial. As médias móveis simples como estas são normalmente de ordem ímpar (por exemplo, 3, 5, 7, etc.). Isto é assim que são simétricas: numa média móvel de ordem m2k1, há k observações anteriores, k observações posteriores e a observação do meio Que são médias. Mas se m fosse uniforme, não seria mais simétrico. Médias móveis de médias móveis É possível aplicar uma média móvel a uma média móvel. Uma razão para fazer isso é fazer uma média móvel de ordem uniforme simétrica. Por exemplo, podemos pegar uma média móvel de ordem 4 e, em seguida, aplicar outra média móvel de ordem 2 aos resultados. Na Tabela 6.2, isso foi feito para os primeiros anos dos dados da produção de cerveja trimestral australiana. Beer2 lt - window 40 ausbeer, início 1992 41 ma4 ltm 40 beer2, ordem 4. center FALSE 41 ma2x4 ltm 40 beer2, ordem 4. center TRUE 41 A notação 2times4-MA na última coluna significa um 4-MA Seguido por um 2-MA. Os valores na última coluna são obtidos tomando uma média móvel de ordem 2 dos valores na coluna anterior. Por exemplo, os dois primeiros valores na coluna 4-MA são 451,2 (443410420532) / 4 e 448,8 (410420532433) / 4. O primeiro valor na coluna 2times4-MA é a média destes dois: 450,0 (451.2448.8) / 2. Quando um 2-MA segue uma média móvel de ordem par (como 4), é chamado de média móvel centrada de ordem 4. Isto é porque os resultados são agora simétricos. Para ver que este é o caso, podemos escrever o 2times4-MA da seguinte forma: begin hat amp frac Bigfrac (y y y y) frac (y y y y) Big frac fray frac14y frac14y frac14y frac18y. Fim É agora uma média ponderada das observações, mas é simétrica. Outras combinações de médias móveis também são possíveis. Por exemplo, um 3 x 3 MA é frequentemente utilizado e consiste numa média móvel de ordem 3 seguida por outra média móvel de ordem 3. Em geral, uma ordem par MA deve ser seguida por uma ordem par MA para torná-lo simétrico. Similarmente, uma ordem ímpar MA deve ser seguida por uma ordem ímpar MA. Estimativa do ciclo de tendência com dados sazonais O uso mais comum de médias móveis centradas é estimar o ciclo de tendência a partir de dados sazonais. Considere o 2x4-MA: fracasso do chapéu frac14y frac14y frac14y frac18y. Quando aplicado a dados trimestrais, cada trimestre do ano recebe igual peso, uma vez que o primeiro eo último termo se aplicam ao mesmo trimestre em anos consecutivos. Conseqüentemente, a variação sazonal será média e os valores resultantes de hat t terão pouca ou nenhuma variação sazonal restante. Obter-se-ia um efeito semelhante utilizando uma mistura de 2 x 8-MA ou 2 x 12-MA. Em geral, uma m-MA 2x é equivalente a uma média móvel ponderada de ordem m1 com todas as observações tomando peso 1 / m, exceto para o primeiro e último termos que tomam pesos 1 / (2m). Portanto, se o período sazonal é par e de ordem m, use um m-MA de 2x para estimar o ciclo tendencial. Se o período sazonal é ímpar e de ordem m, use um m-MA para estimar o ciclo de tendência. Em particular, um 2 x 12-MA pode ser usado para estimar o ciclo de tendência de dados mensais e um 7-MA pode ser usado para estimar o ciclo tendência de dados diários. Outras escolhas para a ordem do MA normalmente resultarão em estimativas de ciclo de tendência sendo contaminadas pela sazonalidade nos dados. Exemplo 6.2 Fabricação de equipamento elétrico A Figura 6.9 mostra uma 2 x 12-MA aplicada ao índice de ordens de equipamentos elétricos. Observe que a linha lisa não mostra sazonalidade é quase o mesmo que o ciclo de tendência mostrado na Figura 6.2 que foi estimado usando um método muito mais sofisticado do que as médias móveis. Qualquer outra escolha para a ordem da média móvel (exceto 24, 36, etc.) teria resultado em uma linha suave que mostra algumas flutuações sazonais. Plot 40 elecequip, ylab quotNovas ordens indicequot. Col quotgrayquot, main quotred 41 Química média ponderada As médias combinadas das médias móveis resultam em médias móveis ponderadas. Por exemplo, o 2x4-MA discutido acima é equivalente a um 5-MA ponderado com pesos dados por frac, frac, frac, frac, frac. Em geral, uma m-MA ponderada pode ser escrita como hat t sum k aj y, onde k (m-1) / 2 e os pesos são dados por a, dots, ak. É importante que todos os pesos somem a um e que sejam simétricos para que aj a. O m-MA simples é um caso especial onde todos os pesos são iguais a 1 / m. Uma grande vantagem das médias móveis ponderadas é que elas produzem uma estimativa mais suave do ciclo tendencial. Em vez das observações que entram e que deixam o cálculo no peso cheio, seus pesos são aumentados lentamente e então lentamente diminuídos resultando em uma curva mais lisa. Alguns conjuntos específicos de pesos são amplamente utilizados. Alguns deles são apresentados na Tabela 6.3.
No comments:
Post a Comment